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Preface

The mind is what the brain does. This volume tries to map a mind model to the correspond-
ing brain so as to not only deepen our understanding of both the brain and the mind, but also
unveil computational underpinnings. That is why the words “Brain-Mind” are hyphenated
in the title.

This volume strives to unify natural intelligence with artificial intelligence. It ap-
proaches intelligence through not only what intelligence is but also how intelligence arises.

In terms of natural intelligence, instead of modeling what a brain does, this volume
explains how the brain develops — how the brain circuits and mind functions emerge from
interactions between the DN and the external environments.

In terms of artificial intelligence, instead of modeling an intelligent agent as a proba-
bilistic version of a static, task-specific, and handcrafted finite automaton (FA), this volume
explains how a genome-like program (Developmental Program, DP) autonomously grows
and adapts a brain-like network (Developmental Network, DN).

In contrast with each FA, the DP is task-nonspecific, general purpose, and capable of
growing a wide variety of intelligent agents (DNs). Each DN is an attentive, dynamically
changing, and probabilistically optimal brain, natural or artificial, that is drastically smaller
(e.g., a large constant) than its static FA-equivalent in terms of the number of states (i.e.,
exponential in the number of concepts to model).

In contrast with traditional artificial intelligence (Al) approaches, humans are not in the
loop of handcrafting an FA. Instead, they are part of the external environments, interacting
with the DN as they interact with human children. Different training paths lead to different
careers of those DN brains, natural or artificial.

Fundamentally different from traditional artificial neural networks, each DN can ab-
stract, at least in principle, as well as any symbolic Al system.

Like all other books on this highly challenging subject, this volume has not resolved all
the details of the brain-mind problem. It is only an introduction to a new departure. Much
of the material in this volume seems to be ahead of time, so I beg the reader to tolerate the
facts, approaches, methods, analyses, and views expressed in this volume.

Constrained by my limited exposure to the related disciplines, examples of fundamental
discipline questions discussed or implied in this volume include:

Biology: How could autonomous and individual cells interact to give rise to animal behav-
iors, and what cellular roles could the genome likely play?
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Neuroscience: From an overarching perspective, how could a brain self-wire, perform top-
down attention, and develop its functions?

Psychology: How does an integrated brain architecture accomplish multiple psychologi-
cal learning models and develop behaviors?

Computer Science: How does a brain-like network compute, adapt, reason, and general-
ize, and how is the automaton theory related to the brain-like network?

Electrical Engineering: How does a brain-like network perform general-purpose, nonlin-
ear, feedback sensing-and-control, beyond traditional nonlinear control?

Mathematics: How does a brain-like network perform general-purpose, nonlinear opti-
mization, and how does a brain realize emergent functionals?

Physics: How do meanings arise from physics, and how does a brain-like network treat
space and time in a unified way, reminiscent of relativity?

Social sciences: How do computational principles of human brains provide insight into
possible solutions to a variety of social and political problems?

A basic reason for such a concise volume to be able to discuss the above wide variety of
discipline problems is that nature is governed by basic laws that are fewer and more abstract
than the number of observable concrete natural phenomena, analogous to how newton’s
laws of motion explain rich phenomena of natural motions.

As both a research monograph and a textbook, the problems at the end of each chap-
ter are meant for senior undergraduate students, graduate students, researchers and other
interested readers to practice. The problems marked with asterisk “*” are relatively more
challenging. The required mathematical background has been reviewed in the Appendix.
For those readers who like to see more concrete DN examples, I have cited the related pub-
lications. A less analytical reader should be able to get the basic ideas if he pays attention
to rich meanings of the mathematical formulations.

Juyang Weng

October, 2012
East Lansing, USA
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Chapter 1

Agents and Tasks

An intelligent system is for performing tasks. However, there are many different tasks in
all walks of life, from playing chess, to driving a car, to performing scientific research. The
subjects of artificial intelligence (Al) include almost all other disciplines. Suppose that one
wants to build an intelligent system for a task 7" in discipline D; then we may expect that he
must first learn knowledge in discipline D so that he knows how to construct an intelligent
machine for task 7. If we treat Al in this task-specific way, we would probably never be
able to finish this course, since we would have to learn almost all disciplines. Therefore,
we need to approach Al in a systematic way. The first basic concept of this systematic
way is agents. We discuss agents and their environments. From these basic agent-related
concepts, we will study various properties of a task, which fall into five categories: external
environment, input, internal environment, output and goal.

1.1 Agents

An agent is anything that senses and acts, as shown in Fig. 1.1. Thus, any task executor
is an agent, regardless if it is natural or artificial. A cat or a human is a natural agent. A
computer program or a robot is an artificial agent. A mixed agent is also possible, such as
a human whom is controlled by a computer program or a robot remotely controlled by a
human.

Extra-body environment:
objects and background

Sensor \ Body /' Effector

Sensor ‘\l Brain |/’ Effector

Agent  ~ Skull

Figure 1.1: The abstract model of an agent

agent





